产业研究
石墨烯具有极佳的热学与电学性能,是目前十分热门的炭材料之一,在导热领域应用价值显著。石墨烯与聚合物复合后制得的石墨烯改性导热复合材料(GTCCs)具有优异的力学性能、热学性能和化学稳定性。对电子设备日益严重的发热问题而言,GTCCs是一种有效的解决方案,其具有替代商用导热硅脂的潜力,梳理相关研究的核心思路并提炼关键信息有助于把握切合实际的发展导向,推动GTCCs大规模产业化应用。本文简要分析了当代电子设备的散热需求与GTCCs的导热机理;将GTCCs的改性手段分为填料杂化、填料改性和主动构建导热骨架三类,介绍了与各类改性手段相适应的生产工艺和国内外研究进展;列举了GTCCs在传感器、涂层等方面的实际应用,展示了其巨大的工业价值;最后,在展望GTCCs未来的同时,对GTCCs研究中存在的问题进行了探讨,从实际出发总结了一些有前景的发展方向。 ...
文献
工业生产中主要通过化学方法将GO(氧化石墨烯)还原,制备RGO(还原氧化石墨烯)。文中将GO及RGO应用于PHP(脉动热管),分析比较它们的结构及热物性,及其对PHP启动和传热的影响。采用闭式3回路铜制PHP,垂直强制风冷散热,蒸发段电加热功率范围10—105 W。PHP充液率约50%,GO及RGO纳米流体质量分数均为0.05%。研究表明:在水中添加GO及RGO有助于改善PHP的启动及传热。加热功率为20 W时,GO及RGO纳米流体的强化作用率分别为37.4%和16.7%。随着加热功率的增加,强化作用有所下降。对于RGO纳米流体,当加热功率为105 W时,强化作用基本消失。与RGO相比,GO纳米流体的强化作用更大。主要归因于GO纳米流体湿润性、分散性及稳定性较好,表面张力及黏度较小。 ...
文献
近年来,将石墨烯转移至金刚石表面形成的石墨烯/金刚石异质结构在精密制造、电子制造等领域展现出显著优势,但石墨烯本征特性会因转移至介电基材后缺陷和界面处的声子散射而明显减弱。因此,以金刚石作为衬底直接生长石墨烯成为获得高质量石墨烯/金刚石异质结构的一种全新尝试。虽然以金刚石作为衬底相比于其他介电材料拥有众多优势,但是现阶段在金刚石表面生长的石墨烯通常存在晶格缺陷多、畴区尺寸小等缺点,也缺乏纳观尺度下金刚石结构表面石墨烯生长的机理解析和理论指导。本文评述了在金属催化、非金属诱导和高温热解三种催化方式下金刚石表面生长石墨烯的纳观尺度机理研究进展,对不同催化方式下金刚石表面生长石墨烯的原子机理进行了总结,并对不同催化条件下生长石墨烯的典型结果进行对比分析,最后归纳了金刚石结构表面生长石墨烯研究所面临的关键问题与挑战,展望了基于金刚石表面石墨烯生长研究的发展方向,可为高质量石墨烯/金刚石异质结构的研究与应用提供有益借鉴。 ...
文献
由于石墨烯(Gr)片层之间存在较强的范德华力且聚醚醚酮(PEEK)的熔融黏度大,Gr在PEEK基体中的分散性较差,导致复合材料的性能不能达到理想状态。为了提高Gr在PEEK中的分散性,本文通过乙酸/硝酸的混酸体系对PEEK进行化学改性,得到了PEEK-Aa粉末,然后采用溶液共混法和热压法制备了Gr/PEEK-Aa纳米复合材料。结果表明,Gr/PEEK-Aa纳米复合材料表现出良好的导电性,最大导电率为3.41×10^(-4 )S/cm,渗流阈值低至0.55vol%。此外,当Gr含量为1wt%时,Gr/PEEK-Aa纳米复合材料具有最佳的综合性能。 ...
文献
石墨烯气凝胶既有石墨烯材料固有的柔性及优异的电学、力学性能,同时又具有高比表面积、低密度、大孔隙率等特点,其独特的三维结构有利于引入其他功能材料,从而赋予复合材料更为优异的性能。原卟啉分子具有高度共轭结构,并且与金属离子配位结合后可发挥催化功能。鉴于此,本工作利用原卟啉分子与石墨烯片层的π-π相互作用,在石墨烯气凝胶上组装一定浓度的原卟啉分子,从而制备了石墨烯/卟啉复合气凝胶材料。该方法工艺简单,容易操作。本工作分析了复合气凝胶材料的微观形貌和成分组成,研究了原卟啉分子的组装对石墨烯气凝胶导电性能的影响,以及石墨烯/卟啉复合气凝胶对硝酸根离子(NO3-)的检测作用。研究结果表明所制备的复合材料具有均匀的三维多孔结构,原卟啉分子的引入可以显著降低石墨烯气凝胶的电阻,而三维气凝胶结构可以有效地实现原卟啉与石墨烯的复合并实现对NO3-的灵敏检测。 ...
文献
通过Hummers法获得两种尺寸的氧化石墨烯(GO),利用模压成型制备GO改性碳纤维增强环氧树脂复合材料(GO/CF/EP),并对复合材料进行湿热处理,利用层间剪切性能、动态热机械性能和微观形貌分析室温干态和湿热处理后复合材料的改性效果。结果表明:GO对复合材料的层间剪切强度和玻璃化转变温度均具有良好的改善作用;室温干态时两种尺寸GO对复合材料层间剪切强度的改善效果基本相同;随GO含量增加,小尺寸GO使复合材料的湿热层间剪切强度下降更快,GO含量为0.1%(质量分数,下同)时对复合材料的层间剪切性能改善作用较好,而GO含量为0.2%时对复合材料的玻璃化转变温度改善更好。随GO含量增加,GO-EP复合树脂基体的放热峰向低温移动,小尺寸GO使复合树脂的凝胶时间变短。微观形貌分析表明,GO的存在有利于增加复合材料破坏时的裂纹扩散路径,从而更有助于材料耗散裂纹尖端能量。 ...
文献
目的为了进一步完善Ag基表面增强拉曼(SERS)基底,提升其性能,设计了制备SERS基底的新型方法,采用2种方法制备分别得到转移石墨烯纳米银复合SERS基底(Transfer-G/Ag/SiO2基底)和纳米银石墨烯复合基底(Ag/G/SiO2基底),并对2种基底的增强效果从增强因子、热稳定性、重复性的角度进行比较。方法使用常压化学气相沉积(APCVD)在二氧化硅和铜表面同时生长石墨烯,使用多元醇水热法制备纳米银,前者与纳米银复合得到Ag/G/SiO2基底,后者将生长出的石墨烯转移后与纳米银制备得到Transfer-G(Cu)/Ag/SiO2基底,以传统方法制备的Transfer-G/Ag/SiO2基底为对照,评价制备的Ag/G/SiO2基底的增强性能。结果使用拉曼测试平台选用低功率532 nm激光测量10-6mol/L罗丹明6G(R6G)探针分子的SERS拉曼光谱,比较2种基底的性能。计算得到2种基底基于10-6mol/L R6G的增强因子,Transfer-G/Ag/SiO2基底的增强因子为9.93×105,Ag/G/SiO2基底的增强因子为9.23×105。测试Ag/G/SiO2的稳定性得到,在611、1362、1648 cm-1处特征峰的RSD值分别为9.80%、14.08%、18.18%,数值均低于20%,甚至在611 cm-1和1362 cm-1处的RSD值分别低于10%和15%。结论Ag/G/SiO2基底的SERS效果与传统方法制备的Transfer-G(Cu)/Ag/SiO2基底相比增强效果同样显著,表现在:两者增强因子基本相同,且都具有很好的热稳定性、均匀性和高度重复性。由于使用水热法提高了纳米银的制备效率,并且石墨烯生长避免转移过程,减少对石墨烯的物理损伤和化学药品的化学损伤,确保原位生长石墨烯的质量,进而提高Ag/G/SiO2基底的性能,为快速制备高性能SERS基底提供可行方法。 ...
文献
文献
文献
Copyright©2002-2024 Cnpowder.com.cn Corporation,All Rights Reserved