文献
文献
本文报道了用二氧化钛纳米颗粒(TiO2NPs)/还原氧化石墨烯(RGO)的复合物修饰玻碳电极检测微量对硝基苯酚(4-NP)的电化学方法.本研究用扫描电子显微镜(SEM)对该复合材料形貌进行表征,用循环伏安法和交流阻抗谱对该复合物电极的电化学性能进行检测,表现出良好的电化学特性,采用差分脉冲伏安法对4-NP进行微量检测,结果令人满意,这主要得益于TiO2NPs/RGO复合物对4-NP有较高的催化活性,其电流峰值与浓度呈较高的线性关系,DPV的检测范围为10μmol·L-1~350μmol·L-1,检测限为0.13μmol·L-1.与其他报道的一些电化学传感器相比,该传感器检测范围大,检测限低,且工作稳定,成本低,分析简单快速,具有很好的应有前景. ...
文献
对比研究多壁碳纳米管(CNT)和石墨烯纳米片(GNP)对Al-SiC基复合材料表面性能的影响,用搅拌摩擦法分别制备Al-SiC-CNT和Al-SiC-GNP复合材料。显微组织表征表明,与CNTs相比,GNPs在铝基体中的分散更加均匀。此外,还观察到SiC和GNP颗粒对位错的阻碍以及基体与增强材料之间的无缺陷界面。纳米压痕结果表明,与Al6061合金相比,Al-SiC-GNP和Al-SiC-CNT复合材料的表面纳米硬度分别显著提高约207%和27%,显微硬度分别提高了约36%和17%。摩擦学分析表明,Al-SiC-GNP复合材料的比磨损率降低约56%,而Al-SiC-CNT复合材料的比磨损率提高约122%。Al-SiC-GNP复合材料的高强度是由于在SiC存在下,GNPs会机械剥离成几层石墨烯(FLG)。此外,热失配、晶粒细化和Orowan循环等多种机制对复合材料的增强也有重要作用。而摩擦性能提升的主要原因是其表面挤出的GNP形成摩擦层,拉曼光谱和其他表征方法证实这一结果。 ...
文献
基于碳纳米材料的纤维传感技术已成为复合材料原位结构健康监测领域中一项十分有前景的技术。本研究采用两种不同的碳纳米传感元件—碳纳米管(carbon nanotube, CNT)涂层纤维(carbon nanotube coated fibers,CNTF)和还原氧化石墨烯(reduced graphene oxide, RGO)涂层纤维(reduced graphene oxide coated fibers, RGOF),分别制造合成具有自传感特性的复合材料,并比较研究两种嵌入式纤维传感器的传感性能和机理。从两种传感器的压阻效应可看出:RGOF的压阻灵敏度更高,并清晰地展现出从线性至非线性的两阶段压阻行为;而CNTF,则在发生断裂前始终呈现出平稳而有序的电学信号。这种强烈的结构-性能关系,可以用树脂渗透理论加以阐释。对CNTF而言,树脂分子可以渗透到其多孔的网络结构中,形成集成在纤维表面完整的CNT/树脂纳米复合结构。相比之下,具有大横向尺寸和表面一致性的RGO则可形成阻碍树脂渗透的无创网络结构。对实验结果和传感机理的进一步分析与研究表明,CNTF适用于材料的力学状态识别与长期监测,而RGOF则对结构损伤的早期预警更有实用价值。 ...
文献
本文制备了CdTe量子点/氮掺杂石墨烯复合材料(CdTe QDs@NG),并采用透射电镜和红外光谱表征了该复合材料。因为CdTe QDs和氮掺杂石墨烯之间的协同作用,将他们修饰至基底电极上改善了电极表面的电子传递性能、发光效率以及比表面积,从而在三丙胺(TPA)存在下,联吡啶钌在CdTe QDs@NG复合材料修饰电极上的电致化学发光(ECL)强度远远超过在裸玻碳电极上的响应效果,因此根据TPA对联吡啶钌电致发光信号的增敏作用建立了测定TPA的新体系。结果表明,在最佳实验条件下,联吡啶钌电致发光强度差值ΔIECL与TPA浓度在4.0×10-9~4.0×10-7 mol/L范围内呈良好的线性关系,检测限(S/N=3)低至1.4×10-9 mol/L。该方法的选择性高、灵敏度强、重现性好,10次重复测定8.0×10-8 mol/L的TPA,相对标准偏差仅为2.03%。采用该方法测定了环境水样中的TPA浓度,加标回收率在97.7%~104.6%范围,表明该方法可用于推广测定实际样品中的TPA浓度。 ...
文献
文献
利用水热法制备了一种可在纯水体系中连续"OFF-ON-OFF"荧光识别Fe^3+和H2PO4^-的B,N,S共掺杂的石墨烯量子点探针材料(BNS-GQDs),并对其形貌和结构进行了表征,结果表明,BNS-GQDs粒径分布均匀,平均粒径为4nm,具有类似石墨烯的结构,且成功掺杂了B,N,S原子.光谱表征结果表明,其在纯水体系中可以实现对Fe^3+的荧光猝灭识别;同时,BNS-GQDs+Fe^3+体系能够专一性地荧光增强识别H2PO4^-.识别机理研究表明,BNS-GQDs可与Fe^3+通过静电作用形成配合物并向Fe^3+转移电子,从而引起荧光猝灭;H2PO4^-可从上述配合物中置换出Fe^3+,引起体系荧光恢复.BNS-GQDs识别Fe3+和H2PO4-具有较好的可逆性,可应用于Hela细胞和实际水样中Fe^3+和H2PO4^-的检测. ...
文献
气相色谱-质谱法(GC-MS)测定植物油中16种邻苯二甲酸酯类塑化剂(PAEs)的第一步是提取样品中的PAEs。取样品0.500 0g,加入正己烷100μL和乙腈2mL,超声提取5min,离心5min,收集上清液,于留存的下层液相中再加乙腈2mL,重复提取1次。所得上清液与第一次上清液合并在40℃氮吹蒸发至近干。于残渣中加入乙腈1mL使溶解。在此溶液中依次加入无水硫酸镁250mg,N-丙基乙二胺(PSA)80mg和磁性氧化石墨烯50mg,超声萃取5min,通过外加磁场收集经净化的上清液,供GC-MS分析。在GC分析中,采用RXI-5si1MS色谱柱,按程序升温(在80~280℃区间)进行色谱分离,进样量为1μL。在MS分析中采用电子轰击离子源(EI)和选择离子监测(SIM)模式。用基质匹配法绘制标准曲线,测得16种PAEs的线性范围均在0.02~1.00mg·L-1之间,其检出限(3S/N)为0.005~0.008mg·kg-1。以空白植物油为基体,用标准加入法进行回收试验,测得回收率在82.2%~111%之间。16种PAEs测定值的相对标准偏差(n=6)在1.0%~7.2%之间。应用此方法分析了市购的5种植物油样品,并在样品中检出5种PAEs。 ...
文献
文献
Copyright©2002-2024 Cnpowder.com.cn Corporation,All Rights Reserved