文献
为研究掺杂石墨烯量子点(GQDs)对聚合物电池的影响,采用溶剂热法制备了GQDs,掺杂到聚3-己基噻吩和富勒烯衍生物(P3HT∶PCBM)中作光敏层制备了聚合物太阳能电池。掺杂不同浓度的GQDs后,聚合物电池的开路电压和填充因子都比未掺杂器件高。GQDs掺杂质量分数为0.15%时,形成的掺杂薄膜平整、均匀,填充因子提高了17.42%。GQDs经还原后,随还原时间的延长,填充因子FF增大。到45 min时,电池的FF基本稳定,从31.57%提高至40.80%,提高了29.24%。退火后,获得了最佳的掺杂GQDs的聚合物太阳能电池,开路电压Voc为0.54 V,填充因子FF为55.56%,光电转换效率为0.75%。 ...
文献
用溶胶-凝胶法制备了Eu,Sm共掺TiO2粉体,将其与P25复合,制备了下转换光阳极,用于染料敏化太阳能电池,利用其下转换特性提高电池的光电性能.用荧光光谱对粉体的发光性能进行表征,荧光光谱显示:Eu,Sm共掺TiO2粉体受463nm光激发可以发射550~700nm的可见光,具有下转换功能.当Eu^3+的摩尔掺杂含量为1%,Sm^3+的摩尔含量为0.5%时,制备的Eu^3+,Sm^3+共掺下转换光阳极,短路电流达到14.08mA/cm2,与使用Eu^3+掺杂TiO2的下转换光阳极电池相比,提高了32.08%,转换效率也达到5.29%. ...
文献
ZnO是一种性能优异的环保半导体材料,其具有合成原材料来源丰富、制备条件简单、形貌结构易调控等优点,被广泛应用于能源、信息、环境等领域。在染料/量子点敏化太阳能电池中,ZnO通常被用作光阳极材料,负载光吸收剂,同时接收和传输电子。通过发挥其结构易控制的优点,一系列不同的ZnO纳米结构,如纳米球,纳米线,纳米片或纳米花等被用于敏化太阳能电池的光阳极,从而极大地提高了敏化太阳能电池的性能。综述将主要从单一纳米结构和复合结构两方面对纳米ZnO材料进行介绍,讨论了不同ZnO结构在染料/量子点敏化太阳能电池中的最新研究进展,并对电池光电性能的进一步提升提出新的展望。 ...
文献
文献
文献
为了得到纳米线阵列太阳能电池的最优转换效率,通过仿真计算对GaAs轴向pin结纳米线阵列进行了结构优化.首先利用三维有限时域差分法分析了GaAs纳米线阵列的光吸收特性,并对其直径、密度等结构参量进行优化,优化后的GaAs纳米线阵列的光吸收率可达87.4%.在此基础上,利用Sentaurus软件包中的电学仿真模块分析了电池的电学性能,并根据光生载流子在纳米线中的分布,对轴向pin结结构进行优化,最终优化过的太阳能电池功率转换效率可达到17.6%.分析结果表明,通过钝化处理以降低GaAs纳米线的表面复合速率,可显著提升电池的功率转换效率,而通过减小纳米线顶端高掺杂区域的体积,可减少载流子复合损耗,从而提高电池效率.该研究可为制作高性能的纳米线太阳能电池提供参考. ...
文献
文献
文献
文献
Copyright©2002-2024 Cnpowder.com.cn Corporation,All Rights Reserved