文献
目的制备一种新型纳米级超声造影剂——液态氟碳(PFP)高分子纳米球,观察其物理特性、体外热致相变、声致相变及体外超声显影效果。方法采用乳化-蒸发法(单乳化法)制备包裹PFP的MPEG-PLGA纳米球(P-NP),以光镜观察纳米球形态分布,以纳米粒度及Zeta电位分析仪检测纳米球粒径和电位;在显微镜上放置加热板实时观察P-NP的相变情况;于体外应用低强度聚焦超声(LIFU)仪辐照后,观察其超声显影效果。结果所制备的包裹PFP的高分子纳米球外观为乳白色混悬液,形态规则,呈球包球形;平均粒径为(393.2±40.7)nm,平均电位为(-5.23±8.69)mV;加热板显示的温度约为42.6℃时,光镜下显示纳米球开始转变为微气泡,且随着温度增高,所产生的气泡逐渐增多;体外行LIFU辐照后,在超声基波和谐波模式下可观察到显影明显增强。结论成功制备了PFP高分子纳米球,其粒径小、稳定性好,体外经LIFU仪辐照后可增强超声显影,有望成为一种新型超声造影剂。 ...
文献
文献
以钛酸四丁酯和硝酸铁为原料,N-羟甲基丙烯酰胺为单体,N,N′-亚甲基双丙烯酰胺为网络剂,采用高分子网络凝胶法制备掺Fe的TiO2粉体,研究了Fe掺杂量和煅烧温度对TiO2粉体性能的影响。采用TG-DTA、X射线衍射(XRD)、紫外-可见光谱分析(UV-Vis)对粉体的热效应、晶体结构、吸收光谱进行了表征。结果表明,随着煅烧温度升高,TiO2晶粒尺寸增加;Fe的掺杂抑制晶粒的长大,促进了TiO2由锐钛矿相向金红石相的转变。Fe的掺杂量和煅烧温度对其光吸收带边影响较大,在实验条件下,Fe的掺杂量为1.5%,煅烧温度为650℃,光吸收带边红移最明显。
...
文献
采用悬浮聚合法制备了巯基功能化纳米Fe3O4-高分子磁性复合材料(SH-nFe3O4-polymer)。通过TGA、EA、AAS、XRD、FTIR、TEM、VSM等手段对合成的SH-nFe3O4-polymer进行了组成、结构、形貌、磁性等表征,并研究了其吸附和去除水中亚甲基蓝(MB)染料的性能。结果表明:合成的SH-nFe3O4-polymer平均粒径为250~300nm,饱和磁化强度为5.88emu/g;SH-nFe3O4-polymer对MB的等温吸附线符合Langmuir模型,饱和吸附量为476.2mg/g,高于四乙烯五胺功能化纳米Fe3O4-高分子磁性复合材料(TEPA-nFe3O4-polymer,30.6mg/g)和不含磁核的巯基功能高分子材料(SH-polymer,74.6mg/g)。吸附热力学研究表明,SH-nFe3O4-polymer对MB的吸附过程是自发的吸热熵增过程;吸附动力学研究表明,吸附过程可在10min内达到平衡,符合准二级动力学模型;其吸附过程的活化能为9.53kJ/mol。SH-nFe3O4-polymer能有效去除水中的MB,其对MB的吸附机理涉及静电相互作用、π-π相互作用和疏水相互作用;磁核的存在可以形成微电场,有利于加速吸附过程的传质,确保吸附过程快速有效地进行。 ...
文献
采用悬浮聚合法制备了巯基功能化纳米Fe3O4-高分子磁性复合材料(SH-nFe3O4-polymer)。通过TGA、EA、AAS、XRD、FTIR、TEM、VSM等手段对合成的SH-nFe3O4-polymer进行了组成、结构、形貌、磁性等表征,并研究了其吸附和去除水中亚甲基蓝(MB)染料的性能。结果表明:合成的SH-nFe3O4-polymer平均粒径为250~300nm,饱和磁化强度为5.88emu/g;SH-nFe3O4-polymer对MB的等温吸附线符合Langmuir模型,饱和吸附量为476.2mg/g,高于四乙烯五胺功能化纳米Fe3O4-高分子磁性复合材料(TEPA-nFe3O4-polymer,30.6mg/g)和不含磁核的巯基功能高分子材料(SH-polymer,74.6mg/g)。吸附热力学研究表明,SH-nFe3O4-polymer对MB的吸附过程是自发的吸热熵增过程;吸附动力学研究表明,吸附过程可在10min内达到平衡,符合准二级动力学模型;其吸附过程的活化能为9.53kJ/mol。SH-nFe3O4-polymer能有效去除水中的MB,其对MB的吸附机理涉及静电相互作用、π-π相互作用和疏水相互作用;磁核的存在可以形成微电场,有利于加速吸附过程的传质,确保吸附过程快速有效地进行。 ...
文献
粉体应用
文献
为制备α-氧化铝的稳定相,氧化铝需要经过高温相变。在使用高分子网络法制备α-氧化铝纳米颗粒过程中,引入高温隔离相能够阻止氧化铝颗粒发生团聚。通过这种手段可以制备出单分散α-氧化铝纳米颗粒。实验是建立在高分子网络法基础上,并应用炭隔离的方法制备单分散α-氧化铝纳米颗粒。实验方法:将网络剂2-丙烯酰胺、N,N-二甲基丙烯酰胺和引发剂过硫酸铵溶于硝酸铝水溶液中,利用2-丙烯酰胺自由基聚合反应以及N,N-二甲基丙烯酰胺分子中两个活泼双键的双功能团效应,将高分子链联结起来构成网络,经过水浴聚合、干燥过程形成干凝胶,使硝酸铝均匀地分散在其中,然后经过高温炭化、研磨、高温相变、除炭以及离心洗涤等过程得到了具有良好分散性、直径大约在10 nm的α-氧化铝纳米颗粒。
...
文献
用1,4-丁二醇作为络合沉淀剂,通过再结晶活化法将晶型混乱并具有晶格缺陷的纳米级MgCl2晶粒均匀分散在硅胶表面,形成结构化纳米载体.将此载体用于负载TiCl4得到结构化纳米Ziegler-Natta催化剂.研究了醇镁比对载体形貌的影响,以及结构化纳米催化剂用于乙烯聚合的催化特性和产物特点.乙烯淤浆高压聚合结果表明结构化纳米Ziegler-Natta催化剂可用于制备超高分子量聚乙烯,并且温度对催化剂活性和聚乙烯产物的分子量都有很大的影响,在实验条件下催化剂活性可达到1261 kg PE.(molTi)-1.h-1.10-5Pa-1,超高分子量聚乙烯的黏均分子量可达到5.87×106.SEM、DSC和粒径分析等结果表明,结构化纳米催化剂制备的聚乙烯产物结晶度高,在实验考察条件下最高可达到49.5%,而且产物形貌规整,接近球形,平均粒径在68~69μm之间,利于后续的生产加工.
...
文献
合成了聚苯乙烯-聚甲基丙烯酸甲酯复合型高分子纳米材料,使其表面成分聚甲基丙烯酸甲酯进一步与烷基二元胺甲醇溶液中过量的胺基发生反应,形成胺基改性的输气管道高分子纳米材料减阻剂。利用现代分析仪器对该材料的化学结构进行表征,其由均匀分布的聚甲基丙烯酸甲酯球形纳米粒子组成,表面修饰一层十二烷基二元胺分子膜,粒子平均粒径150nm。纳米粒子能够"填充"管道内壁粗糙的凹凸表面,降低管道内壁的粗糙度,减阻率达到9%;密布在纳米粒子表面的胺基基团的协同效用增强了纳米材料的缓蚀性能,缓蚀效率大于85%。因此,该材料对于输气管道兼具减阻和防腐功能,能够在保障管道运行安全的条件下迅速增加输量。 ...
Copyright©2002-2024 Cnpowder.com.cn Corporation,All Rights Reserved