文献
文献
基于等离子体金属纳米颗粒的光热水蒸发技术具有广阔的发展前景.然而,由于金属纳米颗粒的不稳定性,高温下金属纳米颗粒将发生表面熔融,水中的腐蚀性离子也能通过扩散作用直接与金属纳米颗粒结合而将其刻蚀.因此,长时间循环会使得金属纳米颗粒出现明显的性能衰减.为了解决这些问题,我们基于海绵模板法设计合成了一种具有三明治结构的夹心纳米片,其中金纳米颗粒限域在还原氧化石墨烯纳米片的层间.得益于限域效应,表面熔融效应和离子扩散现象都得到了很好的抑制.基于此夹心纳米片,我们构建了一种光热水蒸发器.在10 kW的高光强下,该水蒸发器表现出高达85.2%的光-水蒸气转换效率,经过30次循环海水淡化实验,性能一直保持稳定,没有出现明显衰减,表明这种通过三明治结构限域金纳米颗粒的设计有利于促进光热海水淡化技术的实际应用. ...
文献
目的解决纳米碳材料在镁基体中分散难的瓶颈问题,制备出力学性能优异的镁合金复合材料。方法采用超声工艺将质量分数为3.0%的碳纳米管插入到质量分数为0.5%的石墨烯纳米片的片层之间,添加到AZ91镁合金基体中,借助粉末冶金技术+热挤压工艺制备了0.5%GNS+3.0%CNTs复合增强的镁基复合材料。采用光学显微镜和透射电子显微镜观察和分析了复合材料的显微组织和界面结合。测试了复合材料的力学性能,并利用扫描电子显微镜观察了复合材料的拉伸断口形貌。结果复合材料的屈服强度、伸长率和显微硬度分别为(274±5.0)MPa,(8.4±0.2)%,HV(90.5±1.8),与基体合金相比,分别提高了63.1%,20.0%,20.1%。结论GNS+CNTs的加入有效细化了基体合金的晶粒组织,且与镁基体形成了较好的界面结合,促使细晶强化、应力转移强化等各种强化机制的共同作用,使复合材料力学性能显著提高。 ...
文献
碳点(CDs)因其强的光致发光特性而受到越来越多的研究.然而,由于原料来源广泛和合成方法多样,各种不同类型的碳点被迅速合成出来.对碳点的命名和分类存在广泛争论,阻碍了碳点进一步的研究.我们将碳点分为碳化聚合物点(CPDs)、碳纳米点(CNDs)和石墨烯碳纳米点(GNDs).在较低的反应温度下制备的CDs中,以分子/低聚物为主,而在较高的反应温度下制备的CDs中,以碳核态为主.以分子/低聚物为主的碳点称为碳化聚合物点(CPDs).以碳核态为主的碳点称为碳纳米点(CNDs).以柠檬酸和乙二胺为前驱体,分别在180℃和300℃条件下,采用溶剂热合成法合成了聚合物碳点和碳纳米点.以氧化石墨烯水溶液和乙二胺为前驱体,在180℃、6 h条件下,采用溶剂法得到GNDs.用AFM、UV、Raman和FT-IR对CPDs、CNDs和GNDs进行表征.研究了CPDs、CNDs和GNDs对RhB的降解,发现这三种碳点对RhB的降解速率为CPDs>CNDs>GNDs. ...
文献
纳米流体应用于太阳能集热器是太阳能光热转化的重要突破,石墨烯纳米材料在可见光和近红外区域具有较好的吸收特性,实验基于Hummer法制备了石墨烯纳米片材料,对其进行表征。并配制了不同质量分数石墨烯纳米片-乙二醇纳米流体,将其在太阳能模拟器下进行闷晒实验,计算石墨烯纳米片的光热转化效率,并以基液作对比分析其光热转化特性。结果表明纳米流体溶液的光热转化效率随着其浓度的增加而提高,在达到临界值后光热转化效率不再提高反而降低。其中浓度为0.0007%(质量)时的石墨烯纳米片纳米流体溶液温度增加最高,为65.56℃,光热转化效率达到最高约为76.35%,较乙二醇效率升高49.65%。表明石墨烯纳米片具有良好的光学特性,在太阳能集热器中具有较好的应用前景。 ...
产业研究
文献
文献
文献
为改善石墨烯的疏水性,利用二氧化钛的插层法制备分散性良好的二氧化钛改性石墨烯(TiO2-RGO),并将其掺入碱激发矿渣基体中制备石墨烯质量分数分别为0,0.01%,0.02%和0.03%的石墨烯增强碱激发复合材料,研究其力学性能和微观结构以及石墨烯的增强增韧机理。结果表明:在石墨烯掺量为0.03%范围内时,碱激发水泥复合材料的弯曲、抗压强度随石墨烯的质量分数的增加而增大。同时,当添加0.03%石墨烯时,碱激发复合材料的弯曲韧性较空白试样提高了80%以上。通过扫描电子显微镜、X射线衍射仪对复合材料的微观结构进行表征,发现可延展的石墨烯可填充孔隙、增加与基体的接触面积,并通过裂纹偏转和分支以及石墨烯的拉出和锚固作用,有效地提高碱激发复合材料的弯曲韧性、改善脆性破坏特性,但不会改变基体的物相特征。 ...
文献
Copyright©2002-2024 Cnpowder.com.cn Corporation,All Rights Reserved