研究
研究
纳米材料由于具有特殊的光学、力学、磁学、电学、超导、催化等特性而被广泛应用于电子、机械装置、药物传输、催化剂等众多领域。直流电弧等离子体法是一种制备高纯度纳米材料的有效手段,通过在两电极之间的电弧放电产生高温,使反应室中的气体变为等离子体态,原材料蒸发分解成气态原子,过饱和的蒸汽流动到反应室中温度较低的部位,并重新成核生长成所需的纳米粒子。使用直流电弧等离子体法制备纳米材料具有操作简单、成本低、合成速度快、产物纯度高、环境友好等优点。在电弧法制备纳米材料的过程中,改变相关实验参数,会对产物的粒径、形貌等特性产生影响;特别是在制备碳纳米材料时,改变实验条件还会得到如碳纳米管、石墨烯、碳纳米角等不同形貌的碳纳米材料。因此,需要从纳米颗粒的生长机理入手,找到不同纳米材料的最佳合成条件,实现其可控制备。如今,电弧法制备纳米材料的研究重点已由单纯的制备方法研究发展到深入分析其机理与探究可控合成的工艺条件,从而实现粒径可控、颗粒分布均匀纳米材料的规模化制备。此外,电弧法相比其他方法具有独特的优点,探索用电弧法制备新型纳米材料也是目前研究的焦点。近年来,使用电弧法制备纳米材料取得了众多成果。在碳纳米材料领域,不但实现了富勒烯、碳纳米管的制备,而且实现了高品质单层石墨烯和碳纳米角的制备。在金属纳米材料领域,制备出了高品质的纳米银粉和镍粉等。此外,难熔金属由于熔点高,使用其他方法难以制备出相关种类的纳米材料。而电弧区温度可以达到10^4K,使用电弧法可制备出Mo、Cr、V、W等多种难熔金属的纳米材料。在陶瓷纳米材料领域,成功制备了SiC、TiC等高性能陶瓷纳米材料。实现电弧法可控制备纳米材料需要对纳米颗粒的形成及生...
研究
研究
纳米Al2O3颗粒具有优异的力学性能,加入金属中可以大幅提高材料的拉伸强度、屈服强度、硬度等常温力学性能及高温性能。在目前的实验室及工业生产中,制备纳米Al2O3应用最广泛的是液相法,包括沉淀法、溶胶-凝胶法、水解法、微乳液法等。纳米Al2O3增强金属基复合材料可以通过外加法或原位法制备。外加法是在制备复合材料之前单独合成纳米Al2O3颗粒,结合粉末冶金、熔铸等方法引入金属基体,但往往容易出现纳米增强体团聚及增强体与基体界面结合不好。适当的加工工艺,如机械合金化、摩擦搅拌工艺,能在一定程度上弥补这些缺点。原位法是使金属Al发生氧化反应,或基体中其他元素的氧化物与金属Al发生铝热反应生成Al2O3,再通过热压、挤出等致密化手段来制备纳米Al2O3增强金属基复合材料。原位法制备的复合材料往往增强相与基体界面结合更好,且纳米Al2O3在基体中分布更均匀、分散。纳米Al2O3在金属基复合材料中增强机制主要有两方面,一是Orowan机制,弥散在金属晶粒内部的纳米Al2O3颗粒起到阻碍位错通过的作用;二是部分纳米Al2O3分布在金属晶界附近,阻止晶界移动,从而阻止晶粒长大。最后展望了纳米Al2O3增强金属基复合材料的发展前景,指出显微组织结构的构型设计是进一步提高这类材料综合力学性能的有效途径。...
研究
研究
研究
研究
研究
纤维素纳米晶体(cellulose nanocrystal,CNC)具备高强度、高模量、结构可控、易于表面修饰、生物相容性、生物可降解性,在刺激响应功能材料的设计组装过程中扮演着越来越重要的角色。作为一类具有"智能"行为的大分子体系,刺激响应功能材料在受到外部环境的刺激时,能够做出灵敏响应,体现出设定的相应功能,CNC的引入不仅能够调控其力学性能,表面存在的羟基、羧基也为丰富材料的刺激响应源提供了便捷途径。本文从CNC的化学结构切入,介绍了CNC的特性及其构建的刺激响应功能材料的合成思路,并以刺激"开关"为主线,重点介绍了基于CNC的水、pH、热、光单一或多重刺激响应功能材料的研究进展,最后指出,提高纤维素纳米晶体表面修饰改性效率,拓宽多重刺激响应性,实现高性能的基于纤维素纳米晶体的多重刺激响应功能材料的制备是未来该领域的研究重点。...
研究
Copyright©2002-2025 Cnpowder.com.cn Corporation,All Rights Reserved